1,025 research outputs found

    Offsetting of CO₂ emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining

    Get PDF
    The hydrated Mg-carbonate mineral, hydromagnesite [Mg₅(CO₃)₄(OH)₂•4H₂O], precipitates within mine tailings at the Mount Keith Nickel Mine, Western Australia as a direct result of mining operations. We have used quantitative mineralogical data and δ¹³C, δ¹⁸O and F¹⁴C isotopic data to quantify the amount of CO₂fixation and identify carbon sources. Our radiocarbon results indicate that at least 80% of carbon stored in hydromagnesite has been captured from the modern atmosphere. Stable isotopic results indicate that dissolution of atmospheric CO₂ into mine tailings water is kinetically limited, which suggests that the current rate of carbon mineralization could be accelerated. Reactive transport modeling is used to describe the observed variation in tailings mineralogy and to estimate rates of CO₂ fixation. Based on our assessment, approximately 39,800 t/yr of atmospheric CO₂ are being trapped and stored in tailings at Mount Keith. This represents an offsetting of approximately 11% of the mine's annual greenhouse gas emissions. Thus, passive sequestration via enhanced weathering of mineral waste can capture and store a significant amount of CO₂. Recommendations are made for changes to tailings management and ore processing practices that have potential to accelerate carbonation of tailings and further reduce or completely offset the net greenhouse gas emissions at Mount Keith and many other mines

    Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes

    Proteomic responses to gold(III)-toxicity in the bacterium Cupriavidus metallidurans CH34

    Get PDF
    Accepted 11th October 2016The metal-resistant β-proteobacterium Cupriavidus metallidurans drives gold (Au) biomineralisation and the (trans)formation of Au nuggets largely via unknown biochemical processes, ultimately leading to the reductive precipitation of mobile, toxic Au(i/iii)-complexes. In this study proteomic responses of C. metallidurans CH34 to mobile, toxic Au(iii)-chloride are investigated. Cells were grown in the presence of 10 and 50 μM Au(iii)-chloride, 50 μM Cu(ii)-chloride and without additional metals. Differentially expressed proteins were detected by difference gel electrophoresis and identified by liquid chromatography coupled mass spectrometry. Proteins that were more abundant in the presence of Au(iii)-chloride are involved in a range of important cellular functions, e.g., metabolic activities, transcriptional regulation, efflux and metal transport. To identify Au-binding proteins, protein extracts were separated by native 2D gel electrophoresis and Au in protein spots was detected by laser absorption inductively coupled plasma mass spectrometry. A chaperon protein commonly understood to bind copper (Cu), CupC, was identified and shown to bind Au. This indicates that it forms part of a multi-metal detoxification system and suggests that similar/shared detoxification pathways for Au and Cu exist. Overall, this means that C. metallidurans CH34 is able to mollify the toxic effects of cytoplasmic Au(iii) by sequestering this Au-species. This effect may in the future be used to develop CupC-based biosensing capabilities for the in-field detection of Au in exploration samples.Carla M. Zammit, Florian Weiland, Joël Brugger, Benjamin Wade, Lyron Juan Winderbaum, Dietrich H. Nies, Gordon Southam, Peter Hoffmann and Frank Reit

    Association of a functional microsatellite within intron 1 of the BMP5 gene with susceptibility to osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study carried out by our group, the genotyping of 36 microsatellite markers from within a narrow interval of chromosome 6p12.3-q13 generated evidence for linkage and for association to female hip osteoarthritis (OA), with the most compelling association found for a marker within intron 1 of the bone morphogenetic protein 5 gene (<it>BMP5</it>). In this study, we aimed to further categorize the association of variants within intron 1 of <it>BMP5 </it>with OA through an expanded genetic association study of the intron and subsequent functional analysis of associated polymorphisms.</p> <p>Methods</p> <p>We genotyped 18 common polymorphisms including 8 microsatellites and 9 single nucleotide polymorphisms (SNPs) and 1 insertion/deletion (INDEL) from within highly conserved regions between human and mouse within intron 1 of <it>BMP5</it>. These markers were then tested for association to OA by a two-stage approach in which the polymorphisms were initially genotyped in a case-control cohort comprising 361 individuals with associated polymorphisms (<it>P </it>≤ 0.05) then genotyped in a second case-control cohort comprising 1185 individuals.</p> <p>Results</p> <p>Two <it>BMP5 </it>intron 1 polymorphisms demonstrated association in the combined case-control cohort of 1546 individuals (765 cases and 781 controls): microsatellite D6S1276 (<it>P </it>= 0.018) and SNP rs921126 (<it>P </it>= 0.013). Functional analyses in osteoblastic, chondrocytic, and adipocytic cell lines indicated that allelic variants of D6S1276 have significant effects on the transcriptional activity of the <it>BMP5 </it>promoter <it>in vitro</it>.</p> <p>Conclusion</p> <p>Variability in gene expression of <it>BMP5 </it>may be an important contributor to OA genetic susceptibility.</p

    Combined bezafibrate, medroxyprogesterone acetate and valproic acid treatment inhibits osteosarcoma cell growth without adversely affecting normal mesenchymal stem cells.

    Get PDF
    This document is the Accepted Manuscript version of a published work that appeared in final form in Bioscience Reports. To access the final edited and published work see http://dx.doi.org/10.1042/BSR20202505Drug repurposing is a cost effective means of targeting new therapies for cancer. We have examined the effects of the repurposed drugs, bezafibrate, medroxyprogesterone acetate and valproic acid on human osteosarcoma cells, i.e., SAOS2 and MG63 compared with their normal cell counterparts, i.e. mesenchymal stem/stromal cells (MSCs). Cell growth, viability and migration were measured by biochemical assay and live cell imaging, whilst levels of lipid-synthesising enzymes were measured by immunoblotting cell extracts. These drug treatments inhibited the growth and survival of SAOS2 and MG63 cells most effectively when used in combination (termed V-BAP). In contrast, V-BAP treated MSCs remained viable with only moderately reduced cell proliferation. V-BAP treatment also inhibited migratory cell phenotypes. MG63 and SAOS2 cells expressed much greater levels of fatty acid synthase and stearoyl CoA desaturase 1 than MSCs, but these elevated enzyme levels significantly decreased in the V-BAP treated osteosarcoma cells prior to cell death. Hence, we have identified a repurposed drug combination that selectively inhibits the growth and survival of human osteosarcoma cells in association with altered lipid metabolism without adversely affecting their non-transformed cell counterparts

    Organic Matter Preservation and Incipient Mineralization of Microtubules in 120 Ma Basaltic Glass

    Get PDF
    Hollow tubular structures in subaqueously-emplaced basaltic glass may represent trace fossils caused by microbially-mediated glass dissolution. Mineralized structures of similar morphology and spatial distribution in ancient, metamorphosed basaltic rocks have widely been interpreted as ichnofossils, possibly dating to similar to 3.5 Ga or greater. Doubts have been raised, however, regarding the biogenicity of the original hollow tubules and granules in basaltic glass. In particular, although elevated levels of biologically-important elements such as C, S, N, and P as well as organic compounds have been detected in association with these structures, a direct detection of unambiguously biogenic organic molecules has not been accomplished. In this study, we describe the direct detection of proteins associated with tubular textures in basaltic glass using synchrotron X-ray spectromicroscopy. Protein-rich organic matter is shown to be associated with the margins of hollow and partly-mineralized tubules. Furthermore, a variety of tubule-infilling secondary minerals, including Ti-rich oxide phases, were observed filling and preserving the microtextures, demonstrating a mechanism whereby cellular materials may be preserved through geologic time
    corecore